Ad Code

Responsive Advertisement

Detail Theory with examples -- Linear Algebra( Linear Transformation)

Linear Transformation or Linear mapping:

Let V and U be two vector spaces over the same scalar field K .A mapping

F: V U is called as linear mapping or Linear Transformation if

it satisfies the following property:

1) for any vectors v,w ∈ V f( v+w) = f(v) + f(w)

2) for any scalar k and v ∈ V f(kv)=k f(v)

Alternate

For v,w in V and for any scalar c1 , c2

F( c1 v+c2w)= c1 F(v)+c2F(w) then F is linear mapping.


Let A : R^n − − −→ R^n  be a linear Transformation

Properties of Linear Transformation:

1. Every square matrix defines a Linear Transformation

2. Singular transformation: If |A|=0 then transformation Y = AX is called as singular transformation

3. Non Singular transformation: If |A| not equal to 0 then transformation Y = AX is

called as non singular transformation or Regular transformation.

4. Orthogonal transformation: If A is orthogonal matrix then Y =AX is called as Orthogonal transformation.

Matrix A is orthogonal if and only if AA| = A|A = I (Identity Matrix)

5. A non singular Linear Transformation carries linearly independent vectors into linearly independent vectors.

6. Composite Transform: If A: X−−→ Y & B : Y −−→ Z any two transforms then Linear Transformation AB: X : −−→ Z is called as composite Transformation

[If X=AY and Y = BZ then composite Transformation X= (AB) Z

expresses X in terms of Z]


Example:

Let f : R^3---------->R^2   defined as f(( x,y,z)) = (x+y, y-z)

Does f is a linear Transformation?

--->1) for v,w ∈ R^3     f(v+w) = f(v)+f(w)

For v=(a,b,c) and w= (p,q, r) in R^3


L H S = f(v+w) = f( ( a b c) + ( p q r) ) = f( ( a+p, b+q, c+r) = ( a+p+b+q, b+q-c-r)

RHS= f(v)+f(w) = f( (a,b,c) ) +f( (p,q,r) = (a+b, b-c)+( p+q, q-r) = ( a+b+p+q, b-c+q-r)

RHS = ( a+b+p+q, b+q-c-r)

Thus LHS = RHS

f(v+w) = f(v)+f(w)

        2) for any scalar k

f(kv) = k f(v)

F(kv)= f( k( a,b,c) )= f( ( ka,kb,kc) ) = ( ka+kb, kb-kc)= k ( a+b, b-c)

= k f( a b c) = k f( V)

Thus f(kv)= k f(v)

From 1) and 2) f is linear Transformation.

Note : Under Linear Transformation zero vector of Space v is mapped to zero

vector of space U:

If T is linear Transformation then T(kv) = k T(v) for all scalar k

For k=0

T( 0v)= 0 T(v)

T(0)= 0


 Example 2) If F( x,y,z) = (x+1, y+3, z-2)

--->F(0 ,0, 0)= ( 0+1,,0+3, 0-2)= ( 1,3, -7)

Zero is not mapped to zero therefore F is not a linear Transformation.


Post a Comment

0 Comments

Ad Code

Responsive Advertisement